Learn the answers to 30 cutting-edge questions in machine learning and AI and level up your expertise in the field.
If you’ve locked down the basics of machine learning and AI and want a fun way to address lingering knowledge gaps, this book is for you. This rapid-fire series of short chapters addresses 30 essential questions in the field, helping you stay current on the latest technologies you can implement in your own work.
Each chapter of Machine Learning and AI Beyond the Basics asks and answers a central question, with diagrams to explain new concepts and ample references for further reading. This practical, cutting-edge information is missing from most introductory coursework, but critical for real-world applications, research, and acing technical interviews. You won’t need to solve proofs or run code, so this book is a perfect travel companion. You’ll learn a wide range of new concepts in deep neural network architectures, computer vision, natural language processing, production and deployment, and model evaluation, including how
You’ll also learn to distinguish between self-attention and regular attention; name the most common data augmentation techniques for text data; use various self-supervised learning techniques, multi-GPU training paradigms, and types of generative AI; and much more.
Whether you’re a machine learning beginner or an experienced practitioner, add new techniques to your arsenal and keep abreast of exciting developments in a rapidly changing field.
Some of my greatest passions are "Data Science" and machine learning. I enjoy everything that involves working with data: The discovery of interesting patterns and coming up with insightful conclusions using techniques from the fields of data mining and machine learning for predictive modeling.
I am a big advocate of working in teams and the concept of "open source." In my opinion, it is a positive feedback loop: Sharing ideas and tools that are useful to others and getting constructive feedback that helps us learn!
A little bit more about myself: Currently, I am sharpening my analytical skills as a PhD candidate at Michigan State University where I am currently working on a highly efficient virtual screening software for computer-aided drug-discovery and a novel approach to protein ligand docking (among other projects). Basically, it is about the screening of a database of millions of 3-dimensional structures of chemical compounds in order to identifiy the ones that could potentially bind to specific protein receptors in order to trigger a biological response.
In my free-time I am also really fond of sports: Either playing soccer or tennis in the open air or building models for predictions. I always enjoy creative discussions, and I am happy to connect with people. Please feel free to contact me by email or in one of those many other networks!
Very enjoyable. Very easy to read and understand. The collection of topics is stellar. The content for each topic is not super in-depth, but the book covers enough material to get a good understanding of important aspects. This book is not meant for beginners, but for people with some background in ML already who want to learn more about various areas and a good starting point to go deeper into a few.