From ancient Babylon to the last great unsolved problems, Ian Stewart brings us his definitive history of mathematics. In his famous straightforward style, Professor Stewart explains each major development - from the first number systems to chaos theory - and considers how each affected society and changed everyday life forever. Maintaining a personal touch, he introduces all of the outstanding mathematicians of history, from the key Babylonians, Greeks and Egyptians, via Newton and Descartes, to Fermat, Babbage and Godel, and demystifies maths' key concepts without recourse to complicated formulae. Written to provide a captivating historic narrative for the non-mathematician, A Babylonian Made My Blackberry is packed with fascinating nuggets and quirky asides, and contains 100 illustrations and diagrams to illuminate and aid understanding of a subject many dread, but which has made our world what it is today.
Ian Nicholas Stewart is an Emeritus Professor and Digital Media Fellow in the Mathematics Department at Warwick University, with special responsibility for public awareness of mathematics and science. He is best known for his popular science writing on mathematical themes. --from the author's website
Librarian Note: There is more than one author in the GoodReads database with this name.
This is a history of mathematics packed into less than 400 pages. Ian tackles everything from ancient tallying systems to group theory, from foundational maths to probability theory, from number theory to complexity. So no prizes for guessing that this is not an in-depth account of each subject. But I did not expect it to be, and Ian freely acknowledges that he had to make choices of what to include, and cut corners in the rigour with which he chose to explain it.
And I think he made these decisions well. At first, I did think that his treatment would turn out a bit too fluffy for my taste, but as I progressed further into the book, his chosen topics started to bind together and coalesced into an overall rich account of the development of this fascinating intellectual discipline. Even so, I still would have liked a more transparent development of some of the maths he presented. To give you a flavour of the style Ian adopts throughout his account, look at this example from the chapter on trigonometry:
Using the obvious fact that θ/2 + θ/2 =θ, Ptolemy's Theorem implies that sin θ/2 = � [(1 - cos θ) / 2]
Now, I was able to work this out from the angle transformation formulae (which were also given on the same page), but my point is that I had to stop reading, think about it, and scroll a little algebra into the margin. It wasn't hard, but that's only because I remembered having seen this before at school, so I had the confidence to tackle this derivation in the first place. Later on, Ian talks about things I had never seen before, and especially in the chapter on group theory, I remember merely reading the words, and emerging thoroughly befuddled and none the wiser at the end.
Still, these are not really shortcomings of the book. Of course Ian cannot go into all the details and present a cogent mathematical treatment of subjects that are often rarefied and odd, even for mathematicians (I am told). Certainly my enjoyment of the book did not suffer from the fact that he had to gloss over some of the derivations; sometimes I did not understand a single word, but for the most part Ian's account offered a fascinating glimpse into the development of mathematics from its earliest origins. When I did understand something, it made me think about the concepts involved, when I did not, it made me curious to learn more.
This is a short history of maths. By short, I mean really short. Which is unfortunate, because there can be no justice done to any topic within the few pages that the author has allocated for each. In some cases, just as the topic gets interesting, the author is forced to make a rapid conclusion. In other situations, he is forced to become very high-level and ignores the details necessary to help the reader understand what the topic is all about.
Having said that, it is still a fun book in many respects. The focus is on mathematicians and scientists who have made important discoveries, talking about their lives and how they arrived at their deductions and proofs. There is also mention of when mathematicians discovered that something cannot be done, i.e., they discovered a proof that something is not possible in a particular domain. Also how some fields of mathematics did not find much practical use until computers came along.
As one would expect, as the book progressed, I found the reading very difficult. This is the nature of the increasing complexity of the mathematics involved and even though I was familiar with most of the math discussed, the rapid transition from one point to another required careful reading. Unfortunately, the author seems to have devoted more time on the early chapters instead of elaborating and simplifying the later ones.
“Matematik ve Fiziğin Kısa Tarihi� daha doğru başlık. Feynman’ın sevdiğim bir cümlesi var “Matematik bir dildir ve bu dilde şairlere fizikçi denir.� Bu sözü kanıtlayan bir kitap. Fizik ile ilgili buluşların temelindeki matematiksel gelişimi görebilmek açısından kısmen faydalı bir okuma oldu benim için. Ancak bildiğim matematik kavramlarının bile çok karmaşık anlatılması bilmediklerimin anlaşılırlığını oldukça zorlaştırdı, kitap dışı araştırmaya itti. Son bölüme alınan o güzelim Kaos teorisi, fraktallar vs. gibi ilgi çekici konular bundan daha sıkıcı ve yüzeysel anlatılamazdı sanırım. Kitabın ilk yarısı için 4 son yarısı için 2 puan..
This is a history of mathematics, more than it's a book about specific mathematical discoveries. While I understand that it's a formidable task to explain the results of mathematics without actually going through the terminology and proofs, I had hoped for something more akin to 's , which met me at just the right level of abstraction.
The first 150-200 pages of Taming the Infinite didn't teach me much that I didn't already know, although it filled out some historical details I wasn't fully aware of.
Once it reached more recent (and more advanced) mathematics, however, I found that often, the level of abstraction was too high, and I couldn't follow what it was about.
There's also too many lists of mathematicians and dates, with too little narrative structure to make it interesting. In 1807, x published this; then in 1823 y published that. Apart from that, the chronicles sometimes jump weirdly from later to earlier dates within a paragraph or two. Foo published this in 1794, and elaborated on the topic in a later paper in 1799. Meanwhile, Bar had corresponded with Baz; in a letter from 1809 he wrote that blah blah blah. In 1786, Bar was getting close to cracking whatever. I'm not trying to emulate the language, but the structure of the record. It's sometimes a bit disconcerting.
Despite these misgivings, I was overall satisfied with the reading experience.
This is one of the best books on history of mathematics I have read in a very long time. The author has a wonderful way of starting with something basic and getting to complicated aspects in just a couple of pages. I loved it.
The chapters are very interestingly divided into small sub-chapters; everything seems to be organised so that each chapter starts with a basic idea and by the end you get the full on complicated aspects. From this point of view, I don't think the book is for everyone. I will say you need to have a basic idea of some concepts such as differentiation, solving equations, polynomials, probabilities, geometry. It will be even more interesting if you had an idea of about differential equations, abstract algebra or topology - this is not a must, but it will give you a better understanding of the history behind these topics.
Moreover, the author has a great way of explaining applications of those topics in our society. Every chapter ends with a bit on "how [insert topic] do for us", which gives an example from another science or domain that uses that part of mathematics.
Also, the book has small biographies on different mathematicians per topic. I think it is great that after you read about the discovery of a proof or theorem by a great mathematician, you also get a couple of paragraphs about his life. He doesn't spend much time or space on this, just basic information that offers more context. For me it felt like transforming a name related to a theorem into the actual person that worked and struggled to discover that.
I can’t bring myself to finish reading this book, I stopped at chapter 8. The book does summarize the history of the development of math pretty well, but the parts that show you some actual math are really bad, either completely wrong or show you just the end result with almost no hint on how to get that result or why it “should� be true.
"Taming the Infinite" could be one of the best books to explain the history of the mathematics from Ancient Periods until this time. Ian Stewart had done almost everything in his ability. I could generally imagine the world of mathematics and its parts. Author showed examples how we use mathematics in our daily life. But his words are really difficult to understand to ordinary person who is not familiar, for example, with Topology or Calculus.
Leuk boek over de geschiedenis van de wiskunde. Het is niet echt chronologisch opgebouw, maar het is eerder gebiedsgericht bv. hoe de calculus evolueerde naar de analyse en verder naar de differentiaal en integraalrekening. Interessant zijn ook de korte intermezzo's over de belangrijkse figuren uit dat gebied. En elk hoofdstuk sluit af met aan te geven hoe dat gebied zijn toepassing vindt in het dagelijkse leven. Niet elke hoofdstuk vond ik zelf even boeiend, maar als geheel is het toch een boeiend boek. Indien je geïnteresseerd bent in wiskunde natuurlijk en er ook wel een beetje een basis in hebt. Ik denk dan een wiskundeleek hier niet zo veel aan zal hebben.
Another popular history of mathematics, essentially interchangeable with most others. Whatever points he gains for not shying away completely from some of the more technical aspects in the way his colleagues do, he loses for having hand-drawn graphs; I know this is the hip thing to do nowadays, but it looks sloppy and occasionally obscures the information he's trying to convey. Still, not the worst book ever written.
I really quite enjoyed this non-fiction history of math book. I will admit most of the math itself was beyond what I could understand, but I loved hearing about how the different thought processes came about and the histories of the mathematicians. Very enjoyable read.
La historia de las ٱáپ es una cuestión a menudo olvidada en los programas educativos. Muchos pensarán que es más importante centrarse en los procedimientos y en las aplicaciones (aunque en esto último a veces tampoco se incide todo lo que se debería) que entender cómo se llegó al punto de necesitar un razonamiento o herramienta específicos, y en algunos casos puede que sea así, pero si uno desea tener una base sólida en esta rama del conocimiento creo que resulta indispensable comprender la genealogía de las ٱáپ. Yo no tenía una base sólida ni antes de empezar el libro ni ahora que lo he acabado, pero hay multitud de conceptos y teorías que, si no he llegado a entender, al menos si a atisbar, y eso se logra con la visión ampliada de la historia.
Llegué a este libro con la intención de interiorizar mejor algunos apartados de las ٱáپ que me resultaban nebulosos, así que tras un par de búsquedas me decidí por este ejemplar. Tal vez los hay mejores, pero para lo que yo buscaba era todo lo que necesitaba. Algunas críticas que he leído son que los temas no siguen un orden cronológico y que se hacen saltos temporales todo el rato, pero en el propio libro se explica que esto se hace para hacer el seguimiento de ideas, lo cual tiene todo el sentido para mí. También leí que se centra demasiado en las ٱáپ antiguas y no tanto en los descubrimientos recientes. Nuevamente, el propio libro explica que en los últimos cien años se han hecho más descubrimientos en ٱáپ que en el resto de la historia, además de que éstos se asientan en lo anterior. También es cierto que en mi caso me interesaba conocer lo que un matemático podría dar por hecho y que, en mi mediocre acercamiento vital, yo ignoraba.
El lenguaje del libro es bastante accesible, con comparaciones sencillas y explicaciones probablemente bastante burdas pero efectivas para alguien que no sea capaz de entender correctamente un léxico formal. Aun con todo, en muchos momentos perdía el hilo de las explicaciones, nuevamente por carencias en mi conocimiento o sencillamente porque el tema en cuestión era demasiado complejo como para abordarlo en un par de párrafos que se leen de pasada. Pero yo tampoco buscaba profundizar demasiado, pues tampoco voy a usar la mayoría de descubrimientos avanzados de forma consciente. Me bastaba con tener un idea general que más tarde me permitiera seguir aprendiendo, si me apeteciera.
Los apartados donde se explicaban las aplicaciones de las teorías, tanto en la época del descubrimiento como en el presente, son muy útiles y reveladores, al igual que las pequeñas biografías de matemáticos y físicos que ayudaban a entender el contexto en el que germinaron algunas ideas.
Es una pena que la enseñanza de las ٱáپ no se enfoque de otra manera, sobre todo desde el instituto, de forma que uno no se limite a memorizar fórmulas o a resolver centenares de derivadas e integrales sin conocer su utilidad, su razón de ser y su demostración. Pero bueno, supongo que uno también debe buscarse la vida para entender todas estas cuestiones por su cuenta, igual que hicieron muchos matemáticos en el pasado (aunque, desde luego, mis intenciones sean mucho más humildes).
A good summary of the history of mathematics (and mathematicians), in a clear and simple language. I recommend this book specially for young students, but general readers will also gain a good overview of mathematics, even if not particularly enthusiastic about this subject, as mathematical formulas can be skipped without loss of grasping the main historical facts. 3.5/5 stars.
Ian Stewart legt op een bevattelijke manier de evoluties in de wiskunde uit. Hoewel een goede basiskennis van wiskunde (uit het middelbaar) toch wel nodig is, valt het ook als er formules in staan die je niet zo goed snapt, toch nog te volgen, omdat de focus op de historische ontwikkelingen én de toepassingen ligt.
Mathematician and scientist Ian Stewart writes some popular books on the subject (I keep meaning to read his annotated Flatland). The Story of Mathematics is devoted to an overview and history of Mathematics, and what it was good for in the past and what its good for now.
With lots of sidebar digressions on figures and topics, this volume reminded me, in some respects, of my beloved "The Math Book" textbook that I recently found for sale again, used and purchased. The Story of Mathematics takes on Mathematical topics of increasing complexity and difficulty. Each topic is placed in context with how and why it was invented and developed.
So the volume begins with tallies and basic number systems, showing how tallies turned into Babylonian and Egyptian number systems. We progress through basic geometry, our own number system (with sidebars on things like the Mayan and Chinese systems), trigonometry, logarithms, algebraic geometry, number theory, calculus, differential equations, and all the way up to modern chaos theory.
In less than 300 pages, this means that no topic really is done in depth, a strength and a weakness. Similarly, too, the book remains at a high level overview strictly for non-mathematicians. This is not a volume by Eli Maor! In fact, the Mathematically trained might feel this is a bit dumbed down.
So, I believe that intelligent readers who are completely math-phobic and yet have an urge to know more about how it works and where it came from (without doing any math skull sweat) will be happiest with the book. Those fully trained in Mathematics might be frustrated at some of the lack of depth in topics (and probably would be happier with a volume on a more specific subject that they are interested in).
As for myself, I learned some things about fields of mathematics of which I am not very conversant. Stewart has a relatively easy style to follow, but its nothing special. As a production value, I do mention that to keep the volume under 300 pages, the print in the book is relatively small. Still, despite all of this, I enjoyed reading Stewart's Mathematical overview.
I used to be good at maths. Good, but not especially interested, so I dropped it at a younger age than perhaps I should have. Turns out when you don't exercise your maths muscles for over a decade, they atrophy hugely, leaving you staring blankly at the pages of this book about the history of maths, and saying "Whut?".
Each chapter presented the same challenge - how far into it could I get before I didn't know what the hell it was on about? Some felled me on the first page, throwing out equations and squiggly lines which my brain couldn't handle. Some I made it almost to the end of the chapter, doing surprisingly well on topology, logic and set theory. Why were the more recent chapters the ones I coped with best? Is it because I have bothered to read up on these things in the last few years, whereas I've left algebra alone since about 2001? Who knows?
It seems odd to give a positive review to a book I've admitted I didn't get large chunks of, but it's nicely written and friendly enough that you only realise you've no idea what's happening once it's too late and you've read three pages of text without understanding a thing. Selling things in layman's terms isn't always possible, which I think this proves, but getting close enough, as Stewart does, is commendable.
Si hubiera disfrutado de libros como este desde mi infancia, ciertamente mi ocupación actual no sería la misma y no es por menospreciarla. Pero, con certeza digo que a veces uno no sabe que puede amar aún más unas cosas en comparación con otras y esta vida no nos alcanza para amarlas a todas. Ian Stewart es uno de mis escritores preferidos de divulgación científica. He recomendado este libro tantas veces como he podido y lo seguiré haciendo. De hecho poseo el ejemplar impreso y ahora mismo estoy luchando porque un buen amigo me lo regrese.
Due back at the library Monday. Perhaps I'll return to it eventually. What I have read of this is entertaining enough, and I've even managed to thrill and amaze my Y12 class with some of my gleanings from its pages. Sadly, it had too much competition from more wildly interesting books which have appeared to demand my attention.
Geçmişten günümüze matematiğin yaşantımızdaki yerini ve arka plandaki görmediğimiz önemini vurgulayan sade ve anlaşılır şekilde yazılmış güzel bir kitap. Bazı formüllerde baskı hatalarından dolayı hatalar olsa da okumaya değer.
Kitap, matematiğe gerçekten kısa bir tarihsel bakış açısıyla yaklaşıyor. Matematiğin muazzam etkileyici dünyasını ve yarattığı çok önemli etkileri, matematiğe hâlihazırda ilgisi olan okurlara başarılı bir şekilde hissettiriyor. Ancak, kitapta bariz ve kritik sorunlar bulunuyordu ve bence bunlar küçümsenecek seviyede sorunlar değildi. Bu sorunlardan en büyüğü ise bence "anlatım".
Yazar bazı konularda okurlara oldukça etkileyici ve konu hakkındaki merakınızı uyandırıcı bir anlatım ile yaklaşıyor. Okudukça daha fazla meraklanıyorsunuz ve nasıl okuduğunuzu anlamıyorsunuz. Ancak bu çok uzun sürmüyor, yazar konuyu bir anda "popüler matematikten" çıkarıp akademik bir konunun giriş anlatımına çeviriyor. Bir anda kendinizi kompleks bir matematik anlatımı içerisinde bulabiliyorsunuz. Bunları, soyut matematikle yoğun bir şekilde uğraşan birisi olarak söylüyorum. Kitapta ele alınan matematik konuları/olguları zor olduğundan değil, yazarın anlatış biçimi dolayısı ile konular çok kompleks kalıyor. Matematiksel bir olgunun tarihsel gelişimi ve sözel anlatımı ile başlayan süreç bir anda arka arkaya gelen onlarca matematiksel işleme dönüşebiliyor. Sanki bu sayfalarda yazar, karşısındaki okurun bir popüler matematik okuru olduğunu unutmuş ve karşıdaki kişi zaten konuya hâkimmiş gibi bir anlatıma geçiyor. Bu da kitabın akıcılığını oldukça düşürüyor ve okuma deneyiminizi ciddi anlamda olumsuz etkiliyor.
Bir başka ve yine çok büyük sorun ise kitabın dizgisinde. Kitapta akışın arasına neredeyse alakasız bir şekilde eklenmiş olan ek bilgi kutuları okuma sırasındaki akışın arasına giriyor ve akıcılığı bozuyor. Bu bilgi kutuları oldukça güzel bilgiler içeriyor ve okuyucuda merak uyandırıyor. Fakat bu bilgi kutularının sanki kitabın ayrı bir parçasıymış gibi eklenmesine bence hiç gerek yokmuş. Zira kitabın akışı içerisine rahatlıkla yedirilebilecek bilgiler bunlar. Ayrıca bu bilgi kutularından farklı olarak kitaptaki önemli cümleleri vurgulayan kutuları da oldukça gereksiz buldum. Bir cümleyi kitabın içerisine farklı iki yerde basmanın pek bir anlamı olduğunu düşünmüyorum. Kitap içerisinde ufak çaplı yazım hataları ile de pek çok farklı yerde karşılaştım. Bunlar okumayı etkileyecek sorunlar değil ama 9. baskısını yapan bir kitap için bana ilginç geldi.
Burada bahsettiklerim, kitabın benim okuduğum sürümü olan Alfa Bilim'in 9. baskısına aittir.
Son olarak ilgisi olan biriyseniz kitabı okumanızı önerir miyim? Evet. Peki, matematik ile arası çok olmayan birisine, merağını artırması ve matematiğin dünyasının ne kadar etkileyici olduğunu anlaması için bu kitabı okumasını önerir miyim? Kesinlikle hayır. Hatta bu kitabın kısıtlı matematik bilgisi olan birisinde ters bir etki yaratabileceğinden bile korkuyorum.
В отличие от классических трудов по истории математики, написанных авторами, глубоко изучающими тему, и рассчитанных в большей степени в первую очередь тоже на специалистов, вроде математиков, историков, социологов и представителей всяких смежных наук, книга Стюарта ориентирована исключительно на любителей математики. Ее построение отличается от традиционного - автор не рассматривает, как обычно принято, развитие математики как целого, в строгом хронологическом порядке, а рассматривает историю конкретных разделов по отдельности, причем в большей степени, как развитие соответствующих идей. И повествование движется постепенно от арифметики, алгебры и элементарной геометрии к геометрии неэвклидовой, дифференциальной, проективной, к топологии, к иерархии бесконечностей Кантора, проблемам Гильберта, теореме Курта Гёделя о неполнотте и т.д. вплоть до темы научных интересов самого автора - современной теории динамического хаоса. Тут стоит сказать, что когда начинаешь читать книгу, то изложение настолько разжевано, что не требует знаний больше, чем четыре действия арифметики, да и то не всех. Это прямо даже кажется обидным, что тебя держат за ученика церковно-приходской школы, но ближе к середине изложение уже становится совсем не элементарным, но в принципе, разобраться можно со всем. В дополнение к данной книге хорошо заходит другая книга Стюарта , если их прочитать одну за другой, будет больше понятно и там и там. К достоинствам книги я бы отнес еще наличие кратких биографий авторов основных математических открытий - от Пифагора до Перельмана, а также двойное резюме каждой главы - что каждая отрасль математики дала самим математикам, и что она дала всему человечеству. Хотя, как по мне, математика давно не нуждается в апологии, Sapienti sat. А вот что касается недостатков - так это игнорирование достижений дискретной м��тематики, потому как эта математическая поросль как правило привлекательно наглядна для нематиматиков, довольно доступна для освоения, и вместе с тем имеет достаточное количество относительно просто формулируемых, но до сих пор недоказанных положений. Но как бы там ни было, как любая книга Стюарта - это изысканное блюдо для любителей интеллектуального чтения. Как-то так.
Öğrenim hayatından profesyonel yaşama geçişte bir çoğumuzun türlü bahanelerle kaybettiği bir alışkanlık okumak.
Bu süreci maalesef ben de tecrübe ettim. Dönem dönem düzeltmeye yönelik adımlar atsam da kalıcı bir iyileşme sağlayamamıştım. Ta ki geçtiğimiz yıl geçirdiğim ve beni bir ay boyunca evde kalmaya zorlayan rahatsızlık dönemine kadar.
Zorlu geçen sürecin benim için olumlu tarafı okuma alışkanlığımı tam manası ile geri kazanmak oldu. Bu kazanımı korumak adına okuduğum kitaplar hakkında kısa tanıtıcı yazılar yazmaya ve bu yolla kendimi (ve kim bilir belki de başkalarını da) motive etmeye karar verdim.
İşte o yazılardan ilki Ian Nicholas STEWART'ın Matematiğin Kısa Tarihi Sonsuzluğun Terbiye Edilişi adlı eseri üzerine.
İhtiyaç icadın anasıdır. Aslında evrenin dokusunda var olan matematiğin insan tarafından keşfedilip kullanılmaya başlanmasında da bu bağlamda gerçekleştirilmiştir. Kitabın ilk bölümlerinde yazar Babilli muhasebecilerin hayatlarını kolaylaştırmak için keşfettiği sayı sembollerinden başlayarak geometrinin kadastro işlemleri için mısırlılar tarafından kullanımına ve Eukleides tarafından sistemleştirilmesine kadar olan süreci anlatmıştır.
Aslında kitabın ve matematiğin gelişimi geçtiğimiz yüzyıla kadar hep bu sistemleştirilmiş çalışmanın cevap veremediği veya kapsamadığı alanlarda yöntem ve kanıt arayışı ile olmuştur. Geometrik yöntemlerin yetersiz kaldığı noktalarda cebrin nasıl imdada yetiştiğini, başlangıçta beyin cimnastiği gibi görülebilecek dairenin karelenmesi ve bir kübün hacminin iki katına çıkarılması problemleri için matematikçilerin uğraşları, bugün doğa yasalarının ve doğaki süreçlerin matematiksel formülasyonu için olmazsa olmaz olan irrasyonel sayılar karmaşık sayılar, türev, integral ve diferansiyel denklemlere giden yolu nasıl açtığını ve geçtiğimiz yüzyılın daha da soyutlaşarak gelişen matematiksel kavramlarını yazar ustalıkla birbirine bağlıyor ve hikayeleştiriyor. Bunu yaparken de bu kavramların gündelik hayat ve bilimin diğer alanları ve teknoloji ile olan ilişkilerine de eserinde yer veriyor. "Neden matematik öğrenmeliyiz" sorusuna cevap arayanlar aradıkları hikayeyi bu kitapta bulabilirler. Son olarak "Wir müssen wissen, wir werden wissen". (Bilmemiz gerekiyor ve bilecegiz-David HILBERT)
"Bir dakikanın 60 saniye olması, bir saatin 60 dakika olması ve dairenin 360 derece olmasının kökeni eski Babil'dedir."
"Eski Mısırlılann tamsayılan yazmak için kullandıklan sistem basit ve yalındır. Sistemde 1, 10, 100, 1000 gibi sayılar için birer sembol bulunur. Bu sembolleri en çok dokuz kez tekrarlayıp top layarak herhangi bir tamsayıyı ifade etmek mümkün."
"Şu an kullandığımız on sayı sembolü, Hindistan'da ortaya çıktık tan sonra Araplarca kabul edilmiş ve geliştirilmiş olduğu için ge nellikle Hindu-Arap rakamları diye adlandırılır."
"Bilgisayar aritmetiği gerçekte ondalık formatta yürümez. Bilgisayarlar 10 tabanı yerine 2 tabanını, diğer deyişle ikili sistemi kullanır. Bilgisayarlar birler, onlar, yüzler, binler vb yerine 1,2,4,8,16,32,64,128,256 vb (ikinin katları; her biri bir öncekinin iki katı) kullanır. (Dijital kamera bellek kartınızın büyüklüğü, işte bu yüzden 256 me- gabayt gibi komik rakamlarla ifade edilir. Bilgisayarda, 100 sayısı 64 + 32 + 4 olarak parçalandıktan sonra 1100100 olarak depolanır."
"İngiliz matematikçi Robert Recorde'un 1577'de The Whetstone of Witte adlı çalışmasında eşitlik için keşfettiği = sembolü o gün den beri kullanılmaktadır. Recorde, eşit uzunlukta iki paralel çizgi kadar birbirine benzeyen başka bir şey düşünemediğini yazmıştı."
Matematiğin hayatımıza nasıl etki ettiği ve geçmişten günümüze gelişimini sade bir dille aktaran bir kitap olmuş. Konu ilk başta epey ilgimi çekse de kitabın yarısından sonra sıkmaya başladı. Son olarak Bernoulli'yi tek kişi olarak düşünürken bir aile çıkması beni epey şaşırttı.
This abbreviated history of mathematics is more than just a chronology of events. It starts with basic counting at start of civilization, and slowly incorporating and weaving a story of how various mathematical ideas came to being without going into too much technical detail. Math in schools tends to be taught in discrete chunks with no connections, and this book provides that much needed context and purpose. I also like how the book focuses on mathematics as being experimental in nature, sometimes starting out as an abstract "what if" idea and eventually finding its way in applied practice many years down the road.
This book does not delve into too much technical detail; if you are familiar with the mathematical ideas, you will come to a greater appreciation of the discussed ideas. I skimmed over or omitted sections for which I did not have the mathematical background (i.e., whenever I felt lost!), opting to read the summary paragraph at the end of the chapter. I also found that the approach was very Euro-centric, and although there were the cursory acknowledgement of how other civilizations or cultures played a role, this is still very much a traditional view of how mathematics came to being.
Nevertheless, it comes highly recommended to math teachers who want to be able to give their students some more historical context, students interested in mathematics, and those who use mathematics on a routine basis (engineers, biologists, physicists).
Toegegeven, het boek bevat behoorlijk wat vakinhoudelijke kennis. Dat maakt het niet voor iedereen even goed leesbaar. Maar tegelijkertijd is het door de schrijfstijl van Stewart, met een behoorlijke dosis (droge) humor, erg informatief, verhelderend en onderhoudend. Ik vond het erg leuk om te lezen hoe wetenschappers in de loop der tijden met elkaar wedijveren om als eerste een stelling te bewijzen óf juist te ondermijnen met tegenbewijzen. Verfrissend is het om te lezen dat er ook wel eens vol overtuiging in een gerenommeerd tijdschrift een artikel werd gepubliceerd met een vermeend bewijs, terwijl vervolgens de geleerden over elkaar heen buitelen om dit bewijs als volstrekte onzin te bestempelen.
De belangrijkste les na het lezen is voor mij dat wiskunde een alles behalve statisch geheel is. Het is niet een vastomlijnde, onveranderlijke vanzelfsprekendheid, maar het is voortdurend in ontwikkeling en dat zal ook altijd zo blijven. Op de een of andere manier voelt dat bemoedigend, want zoals mijn oma altijd zei: "stilstand is achteruitgang"!
Een uitgebreidere leeservaring is te vinden op mijn boekenblog:
Well, maths is not my strong side actually and I have seen only few topics mentioned in the book during my school years. The first chapters I was familiar though, I could understand the problems and general history behind it. After Renaissance, I kinda lost it :) Things were very complex for me, but I still enjoyed learning about other mathematicians, some of their interesting characters and how they changed the world and affected others. I know that the book is short to explain every detail from beginning to super high level and that might not be possible yet I took what I can and I might use the knowledge in other books or in other fields and combine different ideas together, so it's still helpful in a way.
When i start this book i was really excited. I've read a few books about space and computer science. So i thought it would be like those, starting from a simple idea and slowly building on top of that idea � simplicity to complexity.
This book wasn't like that at all. I didn't understand at least the half of the subjects. This is not for general readers. It seems to me that you need to have quite a lot knowledge about those subjects to understand this. Usually when i read a scientific book, it leaves an impact. I am glad that i read it but i didn't get what i expected.
Well... I'm kind of conflicted. I think the writing is good, and the first half or two-thirds of the book are quite interesting and, although sometimes difficult, I was able to follow through. However, sometimes there's just too much information - as it should have, but I mean there's too much info without many explanations of it. While I did enjoy the book, sometimes I had to take quite the break because it was 'too much'. Overall, I'd recommend the book, but it is sometimes hard to grasp everything.
Ian Stewart, matematiğin 4000 yıllık serencamını bir öykü gibi anlatıyor. Matematiğin doğası ve sınırları, evreni anlama çabamızdaki rolü, yaşadığı krizler ve atılımları ile son 100-150 yılın açtığı ufuklar açısından hoş bir özet. Sıfırdan başlamak isteyenler için ideal bir başlangıç kitabı.
Şahsen bende kafa yorduğum matematik-doğa ilişkisiyle ilgili bazı temel konular üzerine daha fazla araştırma yapma ve daha ileri okumalar olan Stewart'ın Evreni Ölçmek (fizik), Yaşamın Matematiği (biyoloji), Matematiğin Temel İlkeleri (tüm matematik) kitaplarını okuma isteği uyandırdı.
To present the broad strokes of mathematics without going through the rigorous math is a tall task that Stewart mostly nails. There are interesting personal asides that prevent this from being a nonfiction slog, but it is not a page turner. Read this if you love math and are curious about how the key aspects of it developed, but don’t want to spend a year getting through a 12,000 page complete history (looking at you M. Kline).
An interesting and informative enough history, but apparently its possible to have too many popular maths books, you start reading things you already know just in new formats. The last few chapters were very good discussing slightly more modern mathematics (though this was written in 2007). Recommended for anyone with a good basic knowledge of mathematical techniques and wishing to understand more about where they came from.